Chapter 1-3

Alternating Current

Alternating current is where the directional flow of electrons, in a conductor, switches back and forth at regular intervals or cycles. This flow over time is shown as a sinusoidal wave. The number of cycles back and forth is termed the frequency (f) and is measured in Hertz (Hz).

The **peak value** is the highest value reached in either direction.

Peak to peak value is the difference between the positive peak and the negative peak.

A cycle is measured from the point where the wave crosses the zero line, goes positive then goes negative and back to the zero line.

Period (P) is the time taken for one cycle.

Frequency (f) is measurement of cycles per second .

$$f = \frac{1}{P}$$

Example : P = 0.02 seconds f = 1 / 0.02 = 50 Hz

Wavelength

Waves travel at the speed of light unless constrained. The distance a wave, of a given frequency, would travel in one cycle, is called the wavelength.

Imagine a stick and the wave came out of that stick. The distance from the stick that one cycle would travel is the wavelength. Low frequencies have long wavelengths and high frequencies have short wave lengths.

The wavelength is measured in metres and has the symbol lambda (λ)

$$\lambda = c/f$$

 $\lambda = Wavelengh$

 $C = constant 300 \times 10^6$ metres per second (This is the rounded value for the speed of light.) f = frequency in Hz

Example: What is the wavelength if the frequency is 144 MHz Wavelength λ = 300,000,000 / 144,000,000 = 2 metres

Looking at Figure 2, this is a sinewave depiction of the Australian mains power.

The graph below gives a quick conversion between frequency and wavelength.

Radio Frequency Spectrum

Amateur operators can only use the frequencies allocated to them. However, the frequency spectrum is broken into ranges all based on the number 3 for easy memory.

	Classification	Range from	Range to
VLF	Very low Frequency	3 kHz	30 kHz
LF	Low frequency	30 kHz	300 kHz
MF	Medium Frequency	300 kHz	3 MHz
HF	High Frequency	3 MHz	30 MHz
VHF	Very High Frequency	30 MHz	300 MHZ
UHF	Ultra-High Frequency	300 MHz	3 GHz
SHF	Super High Frequency	3 GHz	30 GHz
EHF	Extremely High Frequency	30 GHz	300 GHz

The audio hearing frequency range is 20 Hz to 20,000 Hz. Telephones and communications used a limited frequency range of 300 hertz to 3.4 Kilohertz for over 100 years. While the frequency spectrum of the human speaking voice ranges from about 50 Hertz to 8 Kilohertz, speech remains quite intelligible when transmitted at this very limited bandwidth.

Foundation Frequencies

Operators with a foundation licence can operate on the following bands (wavelengths). Know these frequencies.

Foundation (6 bands)			
Band	Freq in MHz	Mode	
80m	3.5 - 3.7		
4 0m	7 - 7.3	Any mode	
15m	21 - 21.45		
10m	28 - 29.7		
2m	144 - 148		
70cm	430 - 450		

Go to Chapter 1-3 Questions.

Have fun and stay safe.